BENZOLACTAMS AS NON-PEPTIDE CHOLECYSTOKININ RECEPTOR LIGANDS

Mark G. Bock,* Robert M. DiPardo, Daniel F. Veber, Raymond S. L. Chang,† Victor J. Lotti,†
Stephen B. Freedman,§ Roger M. Freidinger

Departments of Medicinal Chemistry and [†]New Lead Pharmacology, Merck Research Laboratories,
West Point, Pennsylvania 19486 (U.S.A.)
§MSD, Research Laboratories, Neuroscience Research Centre, Harlow, Essex (U.K.)

(Received 6 July 1992; accepted 4 September 1992)

Abstract: A series of 1,3-substituted benzolactams are reported which are nonpeptidal receptor ligands of the peptide hormone cholecystokinin (CCK). These compounds are composites of potent, selective benzolactam CCK-A antagonists and unique structural elements which have been demonstrated to enhance the affinity of certain 1,4-benzodiazepine CCK-A antagonists for the CCK-B receptor.

The gastrointestinal hormone cholecystokinin (CCK) is found in the gut and is also widely distributed in the central nervous system¹ where it may assume the function of a neurotransmitter.² Two principal receptor subtypes have been characterized for CCK and these are classified as CCK-A (alimentary) and CCK-B (brain).³⁻⁵ A number of structurally distinct non-peptide ligands have now been uncovered which avidly bind to both CCK-A and CCK-B receptor subtypes with high selectivity.^{6,7} These compounds have supported extensive investigations of the possible roles of CCK in behavior.⁸⁻¹¹

Among the first and most versatile classes of CCK antagonists to be reported were the 1,4-benzodiazepines. 12 Apart from their high intrinsic affinity for the CCK-A receptor, 13 it was discovered that the 1,4-benzodiazepine selectivity for the CCK-B receptor could be modulated by chemical means. 14,15 We were intrigued by the prospect of applying similar design principles to close molecular analogues of 1,4-benzodiazepines, namely benzolactams, and to ascertain if by analogy with the 1,4-benzodiazepines, the CCK-A/CCK-B receptor binding affinities of selected benzolactams could likewise be reversed.

The compounds in this study were synthesized according to published procedures.^{14,16} The methods employed for the determination of [¹²⁵I]CCK-8 binding to rat pancreas and guinea pig cortex and [¹²⁵I]gastrin binding to guinea pig gastric glands were also previously described.^{13,17,18}

The starting point for this investigation was based on the observations that the 1,4-benzodiazepine 1 (MK-329) (Table 1) is a selective CCK-A antagonist and that it is more potent than its corresponding enantiomer. Additionally, substitution of the N-1 methyl group in 1 with an acetic acid ester and concomitant transformation of the 3-arylamide appendage to a 3-arylarea side chain gives compound 2 which, despite its racemic nature, is a selective CCK-B receptor ligand. Further refinement of potency and selectivity is possible by replacing the N-1 ester portion with various functional groups, optimally with the pyrrolidinyl and N-methylpiperidinyl amides, to afford analogues 3 and 4 respectively.

	R	R'	3-Stereo	IC ₅₀ (nM)		
Compd				CCK-A	ССК-В	Gastrin
1	CH ₃	2-indolyl	S	0.08	245	300
2	CH ₂ CO ₂ Et	4-chloroanilinyl	RS	370	1	3.3
3	CH2CO-N	4-chloroanilinyl	RS	520	0.28	0.5
4	CH ₂ CO-N NCH ₃	4-chloroanilinyl	RS	1200	8	2,6

^a Procedures for receptor binding assay are contained in references 13 & 17.

Compound 5 (Table 2) is a construct derived from conformational and structural resemblances between the 1,4-benzodiazepine and benzolactam core ring systems.¹⁵ In our attempt to alter the CCK receptor selectivity displayed by 5 we modified its N-1 and C-3 side chains approximately paralleling the changes required to convert the CCK-A antagonist 1 to the CCK-B receptor ligands 3 and 4. Derivative 6, the first analogue based on this approach, is the linchpin between the 1,4benzodiazepine and benzolactam series for it demonstrated that replacement of the 3-arylamide linkage in 5 with a 3-arylurea linkage resulted in an enhancement of CCK-B receptor affinity at the expense of the CCK-A binding potency. This reversal in selectivity could be duplicated by replacing the 4-chlorophenyl ring in 6 with a 1-naphthyl unit (cf 7). However, no further improvement in potency or selectivity was realized by transforming the N-1 side chain in 7 to give either carboxylic acid or amide side chains (cf. 8-10). Replacement of the 4-chloroanilinyl unit in 6 with 3-methoxy- and 3methylanilinyl groups gave 11 and 15, respectively. The latter displayed only a modest increase in affinity for the CCK-B receptor relative to 6. Unlike the example cited in Table 1, however, conversion of the N-1 ester side chain in 15 to yield N-1 tertiary amides 17 and 19 provided no benefit with regard to CCK-B receptor binding affinity and selectivity. One proposal previously put forth which may account for this result is that the 5-phenyl ring of the benzodiazepine core structure and the N-1 functional group of the benzolactams share some of the same space on the receptor. 16 The more polar functional groups (acids, amides) may consequently not be as readily accommodated by a site to which the lipophilic phenyl ring binds. An alternative view posits that the benzolactams are missing the key 5-phenyl ring of the 1,4-benzodiazepines as is evident by superposing the core structures (e.g. N-1 of compound 3 with N-1 of compound 17, etc.). Whatever the explanation, clearly the analogy between 1,4-benzodiazepines and benzolactams does not extend to this structural change.

Table 2: Receptor Binding Affinities for 3-Substituted Benzolactams^a

				IC ₅₀ (μM)		
Compd	R	R'	3-Stereo	CCK-A	сск-в	Gastrin
5	CH ₂ CO ₂ -t-Bu	2-naphthyl	RS	0.0075	>10	NDb
6	CH ₂ CO ₂ -t-Bu	4-chloroanilinyl	RS	0.35	0.18	0.12
7	CH ₂ CO ₂ -t-Bu	1-aminonaphthyl	RS	0.96	0.15	0.48
8	CH ₂ CO ₂ H	1-aminonaphthyl	RS	20	17	5.5
9	CH2CO-N	1-aminonaphthyl	RS	1.7	0.65	0.46
10	CH2CO+N NCH3	1-aminonaphthyl	RS	32	13	5.4
11	CH ₂ CO ₂ -t-Bu	3-methoxyanilinyl	RS	0.062 ^c	0.270 ^c	0.026
12	CH ₂ CO ₂ H	3-methoxyanilinyl	RS	2.1	8.6	3.1
13	CH2CO-N	3-methoxyanilinyl	s	0.335°	1.19 ^c	ND
14	CH2CO-N	3-methoxyanilinyl	R	0.028 ^c	0.103 ^c	ND
15	CH ₂ CO ₂ -t-Bu	3-methylanilinyl	RS	0.140°	0.110°	0.018
1 6	CH ₂ CO ₂ H	3-methylanilinyl	RS	0.94	2.2	2.5
17	CH2CO-N	3-methylanilinyl	RS	0.130°	0.160 ^c	0.037
18	CH ₂ CO-N	3-methylanilinyl	s	1.00 ^c	0.878 ^c	ND
19	CH2CO-N	3-methylanilinyl	R	0.030°	0.109 ^c	ND
20	CH2CO-N NCH3	3-methylanilinyl	RS	0.97	5	0.61

^a Procedures for receptor binding assays are contained in references 13 & 17. ^b Not determined.

The stereochemistry at the 3-position of previously disclosed 1,4-benzodiazepine and benzolactam CCK antagonists plays a decided role in receptor binding potency and selectivity. ^{13,14,16} This phenomenon does not translate to the benzolactam ureas which were examined in this study. Little difference in binding affinity and selectivity was observed among the R and S enantiomers 13, 14, 18, and 19. Indeed, of the four, all but compound 18 displayed a slight preference for the CCK-A receptor. We note also that the compounds in this study do not significantly discriminate between CCK-B and gastrin receptors. This result is consistent with the similar ligand requirements between the two receptor types further supporting the notion that these receptors may in fact be identical. ^{19,20}

^c Reference 18.

In summary, we have shown that when a prototypical benzolactam CCK-A receptor ligand is structurally modified to more closely conform with CCK-B 1,4-benzodiazepine receptor ligands the selectivity profiles of the resulting analogues are significantly altered. While an optimal 3-dimensional substitution pattern, yielding CCK-B selective agents per se, has not yet been uncovered for these benzolactam analogues,²¹ our preliminary results indicate that the benzolactam core structure should justifiably be considered as a candidate template in the general design of nonpeptide receptor ligands.

Acknowledgements. We thank Mrs. J. F. Kaysen for manuscript preparation, Dr. W. H. Parsons for supplying key benzolactam intermediates, and Dr. P. S. Anderson for support and encouragement.

References and Notes.

- 1. Vanderhaegen, J.-J.; Signeau, J. C.; Gepts, W. Nature (London) 1975, 257, 604-605.
- Rehfeld, J. F. Clin. Gastroenterol. 1980, 9, 593-607.
- 3. Innes, R. B.; Snyder, S. H. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 6917-6921.
- 4. Saito, A.; Sankaran, H.; Goldfine, I. D.; Williams, J. A. Science 1980, 208, 1155-1156.
- Moran, T.; Robinson, P.; Goldrich, M. S.; McHugh, P. Brain Res. 1986, 362, 175-179.
- 6. Evans, B. E. Drugs Future 1989, 14, 971-979.
- 7. Bock, M. G. *Drugs Future* **1991**, *16*, 631-640.
- Rehfeld, J. F.; Hansen, H. F.; Marley, P. D.; Stengard-Petersen, K. Ann. N. Y. Acad. Sci. 1985, 448, 11-23.
- Hughes, J.; Boden, P.; Costall, B.; Domeney, A.; Kelly, E.; Horwell, D.C.; Hunter, R.D.; Woodruff, G.N. Proc. Nat. Acad. Sci. USA 1990, 87, 6728-6732.
- 10. Ravard, S.; Dourish, C. T. Trends Pharmacol Sci. 1990, 11, 271-273.
- Singh, L.; Field, M.J.; Hughes, J.; Menzies, R.; Oles, R.J.; Vass, C.A.; Woodruff, G.N. Br. J. Pharmacol. 1991, 104, 239-245.
- Pharmacol. 1991, 104, 239-245.
 Evans, B. E.; Bock, M. G.; Rittle, K. E.; DiPardo, R. M.; Whitter, W. L.; Veber, D. F.; Anderson, P. S.; Freidinger, R. M. Proc. Nat. Acad. Sci. USA 1986, 83, 4918-4922.
- 13. Chang, R. S. L., Lotti, V. J. Proc. Nat. Acad. Sci. USA 1986, 83, 4923-4926.
- Bock, M. G.; DiPardo, R. M.; Evans, B. E.; Rittle, K. E.; Whitter, W. L.; Veber, D. F.; Anderson, P. S.; Freidinger, R. M. J. Med. Chem. 1989, 32, 13-16.
 Bock, M. G.; DiPardo, R. M.; Evans, B. E.; Rittle, K. E.; Whitter, W. L.; Lotti, V. J.; Chang, R. S.
- Bock, M. G.; DiPardo, R. M.; Evans, B. E.; Rittle, K. E.; Whitter, W. L.; Lotti, V. J.; Chang, R. S. L.; Veber, D. F.; Anderson, P. S.; Freidinger, R. M. Trends in Medicinal Chemistry, van der Goot, H.; Domany, G.; Pallos, L.; Timmerman, H. (Eds.), Elsevier: Amsterdam, 1989, p. 573-580.
- Parsons, W. H.; Patchett, A. A.; Holloway, M. K.; Smith, G. M.; Davidson, J. L.; Lotti, V. J.; Chang, R. S. L. J. Med. Chem. 1989, 32, 1681-1685.
- 17. Lotti, V. J.; Chang, R. S. L. Eur. J. Pharmacol. 1989, 162, 273-280.
- 18. For selected compounds the published radioreceptor binding protocol for rat pancreas and guinea pig cerebral cortex membranes was modified according to the following procedure: assays were conducted in a modified Hepes Krebs' buffer, pH 6.5, containing 20 mM Hepes, 1 mM EGTA, 5 mM MgCl2 and 150 mM NaCl. The pancreas assay also contained 0.25 mg/ml bacitracin, 0.1 mg/ml soybean trypsin inhibitor, and 2 mg/ml BSA. Tissue was resuspended at 1g (original wet weight) to 2000 ml (pancreas) and 120 ml (brain). Following a 90 min incubation, samples were filtered over GF/C filters and washed with ice cold 100 mM NaCl.
- 19. Hays, S. E.; Beinfeld, M. C.; Jensen, R. T.; Goodwin, F. K.; Paul, S. M. *Neuropeptides* 1980, 1, 53-62.
- 20. Dourish, C. T.; Hill, D. R. Trends Pharmacol Sci. 1987, 8, 207-208.
- In a previous disclosure from these laboratories a structural analogy was drawn between glutamic acid and 1,4-benzodiazepine CCK antagonists. The model proved useful in the design of CCK-A selective ligands but attempts to develop CCK-B/gastrin selective ligands by preparing hybrid structures were unsuccessful: Freidinger, R. M.; Whitter, W. L.; Gould, N. P.; Holloway, M. K.; Chang, R. S. L.; Lotti, V. J. J. Med. Chem. 1990, 33, 591-595.